
UCRL-ID-144274

Report on the HPSS
Database Benchmark

D. Fisher

June 19,2001

U.S.Departmentof Energy

p

Lawrence
Livermore
National
Laboratory

Approved for public release; further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http:/ /www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http:/ /www.llnl.gov/tid/Library.html



Report on the HPSS Database Benchmark
June 19,2001
David Fisher

1 Introduction
Concerns about the long-term viability of SFS as the metadata store for HPSS have been
increasing. A concern that Transarc may discontinue support for SFS motivates us to
consider alternative means to store HPSS metadata. The obvious alternative is a
commercial database.

Commercial databases have the necessary characteristics for storage of HPSS metadata
records. They are robust and scalable and can easily accommodate the volume of data
that must be stored. They provide programming interfaces, transactional semantics and a
full set of maintenance and performance enhancement tools.

A team was organized within the HPSS project to study and recommend an approach for
the replacement of SFS. Members of the team are David Fisher, Jim Minton, Donna
Mecozzi, Danny Cook, Bart Parliman and Lynn Jones.

We examined several possible solutions to the problem of replacing SFS, and
recommended on May 22, 2000, in a report to the HPSS Technical and Executive
Committees, to change HPSS into a database application over either Oracle or DB2.

We recommended either Oracle or DB2 on the basis of market share and technical
suitability. Oracle and DB2 are dominant offerings in the market, and it is in the best
interest of HPSS to use a major player’s product. Both databases provide a suitable
programming interface. Transaction management fimctions, support for multi-threaded
clients and data manipulation languages (DML) are available. These findings were
supported in meetings held with technical experts from both companies. In both cases,
the evidence indicated that either database would provide the features needed to host
HPSS.

2 Database Benchmark Tool
The next step in the process was to conduct a performance benchmark of DB2 and
Oracle. For comparison, SFS was benchmarked as well. The performance criterion we
were most interested in was the rate at which HPSS user files could be created. For short
files, the time to put a file into HPSS is dominated by the time to create the metadata.
We created a program that emulated the metadata changes made by HPSS when a user
file is created, and used it to measure the sustainable rate of user file creation. Then this
program was “ported” to DB2 and Oracle, to obtain sustained rate performance numbers
from those platforms.

It was understood that the SFS benchmark program would not directly “port” to either
database; considerable re-writing of the program would be necessary. SFS uses a record
oriented interface, while databases use SQL, which is oriented towards database tables

-1-



and rows, and operations on fields in those rows. We followed a set of porting rules
which required the database benchmark programs to use a C language callable library
interface (rather than say, embedded SQL), and to follow the basic algorithm of the SFS
benchmark program. We permitted the database benchmarks to be written using best
practice methods for the database in question, as long as those methods preserved the
basic algorithm of the SFS benchmark, and could be applied to the eventual HPSS
production interface. Members of the team inspected both programs to ensure a “level
playing field”.

2.1 SFS Benchmark
The SFS benchmark program emulates the steps taken by HPSS when a user file is
created. A non-transactional read of a Name Server table is followed by a transaction in
which the Name Server table is read again, and then a record is inserted in the table.
Most fields in this record contain fixed values, but values of fields used as primary keys
were given random values. The transaction continues by inserting a corresponding
Bitfile Server record, after which the transaction is committed. This sequence of
operations is enclosed in a loop which is repeated a configurable number of times.

The program emulates the multi-threaded nature of HPSS servers by creating a
conilgurable number of threads, and running a separate instance of the benchmark loop in
each. OFD management and other details of the use of the SFS interface are similar to
the use by HPSS servers.

By December 2000, the SFS benchmark program was debugged and working as desired.
The program was “frozen” at that time.

2.2 DB2 Benchmark
A copy of the “frozen” SFS benchmark program was sent to Shirley Woods at ORNL
who was assigned the task of porting it to DB2. Shirley created a database schema based
on the SFS definitions of the subject HPSS metadata tables, using the appropriate DB2
data types. Members of our team reviewed this schema, some revisions were made, and
the schema was approved. Shirley re-wrote the test loop using DB2 CLI library functions
as the database interface. She optimized the performance of the program by extracting
from the loop the statement preparation steps that were invariant and could be performed
once prior to entry to the loop. Members of the team inspected the program and
determined that it conformed to our porting guidelines.

2.3 Oracle Benchmark
A copy of the “frozen” SFS benchmark program was sent to Lloyd Arrowood at ORNL
who was assigned the task of porting it to Oracle. Lloyd created a database schema based
on the SFS definitions of the subject HPSS metadata tables, using the appropriate Oracle
data types. Members of our team reviewed this schema, some revisions were made, and
the schema was approved. Lloyd re-wrote the test loop using Oracle OCI library
finctions as the database interface. As in the DB2 benchmark, the Oracle benchmark
was optimized by removing invariant code fi-om the test loop. SQL statements that were
invariant in the loop were prepared once by each thread, then the prepared statements

-2-



were executed repeatedly with only the data values to be inserted varying from one
iteration of the loop to the next. Members of the team inspected the program and
determined that it conformed to our porting guidelines.

3 Testbed Description
A fi.mdamental requirement for the benchmark test was that all three benchmark
programs must be run on the same test platform. In addition, the test platform should be
a reasonably up to date system in terms of CPU and I/O performance. We found such a
system in the Probe testbed at ORNL. Probe was created to test new equipment, new
protocols, and software for storage applications. We were given access to a system,
“Marlin”, which is an IBM RS/6000 model H70, with 4 PowerPC RS64-11 CPUS, 4MB

of L2 cache, 2 GBs of RAM, an IBM 2104 SCSI disk array and an IBM PCI 4 channel
Ultra 3 SCSI RAID adaptor. A Texas Memory Systems disk, essentially a RAM disk,
was available during the first round of runs of all three benchmark programs.

4 Running the Benchmark
To avoid introducing unnecessary variables in the testing process, the following set of
rules for running the benchmark programs were established:

. All tables must be empty at the start of a test run.
● Databases do not need to checkpoint during the test run.
● The test system (Marlin) runs only the designated benchmark during the test run.
. Log archiving, or its equivalent, is enabled during the test.
. The benchmark program runs 20 threads, with each thread performing 1000

pseudo file creates. An appropriate shell script runs the program in a loop for a
total of 50 iterations for a total of 1,000,000 pseudo file inserts. The script
redirects the standard output from the benchmark into a file.

. While the testis in progress, a tool such as “monitor” is run to collect CPU, disk
and memory paging statistics.

. The test result consists of the benchmark standard output log and the monitor
output log.

5 Benchmark Results

5.1 SFS Results

5.1.1 Environment
The benchmark was run against TX Series 4.3. The SFS data volume and log volume
were on separate “disks” in the TMS disk system. Each TMS disk had its own Fibre
Channel adaptor, an Emulex LP8000 with the Emulex driver. Both adaptors were
mounted in 64-bit PCI slots. SFS log archiving was disabled.

5.1.2 Results
The benchmark achieved a rate of approximately 155 file insert operations per second.
However, as the size of the SFS files grew, some performance degradation was observed.

-3-



In the last iteration of the test, the rate was reduced to 122 operations per second. The
disk was essentially idle during the test, memory paging was minimal (<20
faults/second), and CPU utilization was 100’XO.

5.2 DB2 Results

5.2.1 Environment

The benchmark was run against Version 7.1 of the DB2 Universal Database. DB2 was
configured to allow the client to communicate with the server over the TCP/IP Ioopback
interface. The TMS disk was used in early runs of the benchmark, but was not available
for later runs. The absence of the TMS disk did not change the ranking or relative
performance of the databases and SFS materially.

Both tables and indices were built on a Database Managed Space tablespace. The
tablespace was configured on a container that consisted of a single AIX raw logical
volume. The raw logical volume was configured on an 8-disk LUN (RAID 5-E) of the
IBM 2104 SCSI disk array.

Logging was configured to use three 100MB log files. The log file directory was on an
AIX JFS logical volume configured on a LUN of the IBM 2104. Log archiving was
disabled for the benchmark. Because of the size of the log files, no database checkpoint
occurred during the benchmark.

Since the benchmark required no long running queries, the degree of database parallelism
was set to one. A single 200MB database buffer pool was configured for DB2 for its
cache table and index pages. The size of the agent pool was set to 23 (20 + 3) to match
the number of benchmark connections, plus a few spares.

The number of page cleaners and 1/0 servers was set to 4, one per processor, in order to
optimize loading and flushing of the buffer pool.

5.2.2 Results
In fifty iterations of the benchmark program, DB2 averaged 1351 pseudo file insert
operations per second across all threads, with the high and low being 1399 and 1311
operations per second. The benchmark drove all CPUS at near 100% utilization (only
around 2% idle across all four processors). A small amount of paging was noticed, with
about 750 pageouts per ‘monitor’ sample period (every 10 seconds).

Flushing pages from the database buffer pool seemed to dominate the I/O activity, with
the bytes written per second in the 4MB range. The rate of pages read from disk barely
exceeded 300KB per second. Due to the small level of paging observed, it appears that
additional memory might have increased performance.

-4-



5.3 Oracle Results

5.3.1 Environment
The test was run against Oracle Enterprise Edition, version 8.1.6. The TMS disk was
used in early runs of the benchmark, but was not available for later runs. The absence of
the TMS disk did not change the ranking or relative performance of the databases and
SFS materially.

A number of changes were made to the cotilguration of the Oracle instance on Marlin to
maximize the benchmark speed. The test used locally managed tablespaces with larger
extent sizes to eliminate frequent and unnecessary space allocation. Larger redo log files
were used to reduce the number of database checkpoints, which had been occurring every
two minutes, and the redo log buffer was tuned for best performance. Each table and
table index had more than one freelist assigned to eliminate bottlenecks associated with
heavy row insert activity. The System Global Area was reduced in size to eliminate
unused shared memory buffers. Data storage files were positioned on the devices to
minimize I/O bottlenecks.

5.3.2 Results
In fifty iterations of the benchmark program, Oracle yielded an average of1157 pseudo
file insert operations per second across all threads, with the high and low being 1245 and
633 operations per second. This test included two database checkpoints (which should
have been avoided) that lowered performance to about 600 per second in one case and
950 per second in the other.

5.4 Petiormance evaluation cof7c/usiof9
Both DB2 and Oracle exhibited at least an 8X performance improvement over SFS. The
results of the benchmark indicate that Oracle and DB2 performance is similar, in very
carefidly tuned environments, with DB2 holding a slight edge. Based on these results,
either database represents a major step forward over SFS and both are acceptable in terms
of performance.

The benchmark program has illustrated that both DB2 and Oracle can be integrated with
HPSS and used to store and retrieve HPSS metadata. The exercise of creating a program
to drive a database, using HPSS data structures, was part of the intended product of the
benchmark effort. While the benchmark programs are “quick and dirty”, they are
sufficiently representative of how HPSS works to show that either database could be used
in place of SFS.

6 Technical Evaluation
In this section the technical strengths and weaknesses of Oracle and DB2 that are
germane to their use by HPSS are described. This section concludes with a database
recommendation based on technical merit.

-5-



6.1 DCE compatibility
The DB2/CLI library seems to be “DCE aware” , i.e., programs that invoke DCE header
files compile and link without conflicts between the DCE environment and the database
environment. The Oracle OCI library has direct conflicts with DCE. Both DCE and
Oracle invoke C language “typedef’ commands to define types such as “boolean”. To
resolve this conflict, the portion of the Oracle benchmark program that includes the
Oracle header definitions was compiled separately from the rest of the program, using a
set of modified HPSS header files. Linking both modules into a single executable was
successful.

To use Oracle in HPSS, we would have to segregate all of the OCI interface functions
from the rest of the HPSS source and compile them with a special set of HPSS header
files modified to avoid the DCE/Oracle conflicts. We have dealt with a similar problem
in the common services portion of the HPSS source tree. We have to create an XDR
interface between two HPSS servers using data structure definitions meant for DCE. We
solve this problem with a Perl script that generates XDR compatible header files tlom the
HPSS headers. We believe we can solve the DCE/OCI incompatibility with a similar
work-around.

6.2 Standards
DB2/CLI is based on the Microsoft Open Database Connectivity specification and the
1S0 Call Level Interface International Standard (ISO/IEC 9075-3:1995 SQL/CLI) for
SQL/CLI. All or most of the symbols, I%nction names and definitions follow these
standards. A complete discussion of this topic can be found in chapter one of the IBM
DB2 Universal Database Call Level Interface Guide and Reference. The Oracle OCI
library provides functions with semantics similar to the standard DB2 functions, but the
fimction names and calling sequences and other details do not conform to the standard.
Our conclusion is that Oracle OCI is not based on a standard interface model.

6.3 Locking
Oracle provides row-level locking, with no lock escalation. This means that locks are
taken on individual rows as transactions progress, and that these locks do not escalate to
pages or tables. This provides a greater level of concurrency in a transaction intensive
environment. The possibility of transaction lock induced deadlocks is greatly decreased.

It is possible to get into serious problems with a poorly configured DB2 system.
Situations can arise where lock escalation can cause deadlocks, but this should not
happen in a properly configured database. It is possible that the DB2 locking mechanism
is faster than Oracle’s because all of the locks are kept in memory. We believe that
Oracle’s locks are kept in a column in the table, but we wonder if this approach may
involve some extra I/O.

6.4 Multi-level versioning
Oracle provides a multi-level versioning feature that allows data that is being modified in
a transaction to be referenced outside of the transaction. The outside reference gets the

-6-



previous version of the data. Once the transaction commits, subsequent references get
the updated version of the data. In addition, a time can be specified in the SQL SELECT
statement and the version of the data in effect at that time is returned.

This feature eliminates the problem of “dirty reads”. A reference to an item of data that
is being modified either gets the unmodified value, or the new committed value. There
are several algorithms in HPSS dealing with dirty reads that would be simplified by this
feature.

6.5 DB agent memory size
Two models for representing the threads in the Oracle benchmark program were explored
during the development of the program. The agent per thread model creates a process for
each thread in the benchmark, while the Multi-Threaded Server (MTS) model funnels
requests from threads through a dispatcher to a fixed number of agents. MTS is designed
to limit the impact on system resources by a large number of users. Experimentation with
these two models showed that the agent per thread model achieves significantly higher
performance than MTS. DB2 also uses the agent per thread model. Both databases
provide a means to configure the number of agent processes available to serve client
requests.

A significant difference in the size of the agent processes was observed. DB2 agents use
about 700KB of memory, while Oracle agents use about 24MB. While the amount of
real memory used by these processes maybe manageable, we are concerned that a large
number of 24MB processes may be needed to support HPSS, and they may impose
substantial requirements on the amount of memory needed by host nodes.

7 Technical recommendation
Either database performs at a rate almost an order of magnitude greater than SFS, even
when SFS was given an edge with a RAM disk system. The benchmarks demonstrate
that HPSS metadata can be mapped into database data types, that the transaction
management tools are suitable, and that using a database for HPSS metadata storage and
retrieval is feasible.

For our purposes, neither database holds a significant technical advantage over the other.
Oracle has locking strategies and multi-level versioning not found in DB2, but DB2 is a
better choice for the DCE environment and uses a standardized interface that may reduce
the work required to add a second database platform. We believe that HPSS could run
over either database effectively and efficiently.

We conclude that HPSS should be re-hosted over Oracle or DB2 rather than remaining on
SFS, and recommend DB2 as our initial target platform. The benchmarks demonstrated
that either database will provide a higher metadata transaction rate than SFS, and will
support growing metadata stores with less performance loss. DB2’s better fit in the DCE
environment, and its conformance to interface standards make it our first choice.

-7-



8 Interface library
We plan to develop’ a database interface library for HPSS that will provide an abstraction
layer between the database API and HPSS. This library will hide the details of the
database API, and will facilitate the use of databases other than our recommended initial
target. The library will be designed to minimize the amount of database dependent code
outside of the library. The principal design objective of this library is to make porting of
HPSS to a different database a practical matter.

9 Appendix A
The following itiorrnation represents a summarized account of the results obtained from
the benchmark testing for each database tested. To obtain the detailed information that
these results are based on, please contact:

David Fisher
Lawrence Liverrnore National Laboratory
dsf@llnl.gov
(925) 422-4215

10 Appendix B
The SFS benchmark was run with and without the Texas Memory Systems disk. The
performance numbers shown in this report were obtained using the disk.

In addition to the Probe SFS benchmark, a number of tests were run with the SFS
benchmark program at LANL. The purpose of these tests was to learn how SFS
performance varies with disk coni5guration, and to experimentally determine the best disk
configuration for large production HPSS systems. Several tests were run on a 44P-270
with a Sun T300 disk array configured as a RAID 1 SFS log volume and a RAID 5 SFS
data volume. These disk systems were configured to minimize disk waiting in the
benchmark. A number of conclusions can be drawn from these tests:

1. SFS will run at 100?4oCPU utilization in the first few iterations of the test.
2. As the size of the SFS data file increases, HPSS file insert performance decreases.

Perfommnce does not scale up with CPU speed unless the data volume is stored
on a striped RAID 5 system, or a system such as the TMS.

3. The SFS log volume must be placed on a high performance disk such as a cached
RAID, or it will constrain SFS from filly utilizing the CPU with resultant
performance degradation.

4. The primary SFS limitation appears to be CPU resource utilization as the
benchmark always used 100’% of the CPU when the disk was configured to
eliminate I/O bottlenecks. Results better than those seen with the TMS disk do
not seem to be obtainable.

-8-




